(i) We have limx→010x−2x−5x+1x tan x
=limx→05x.2x−2x−5x+1x tan x=limx→02x(5x−1)−1(5x−1)x tan x
=limx→0(2x−1)(5x−1)x tan x
=limx→02x−1x×limx→05x−1x×limx→0xtan x
=log 2×log 5×1
=(log 2)(log 5)
(ii) Let y=1+tan x1−tan x
On differentiating both sides w.r.t. x, we get
dydx=(1−tan x)ddx(1+tan x)−(1+tan x)ddx(1−tan x)(1−tan x)2
=(1−tan x)(sec2x−(1+tan x)(−sec2x))(1−tan x)2
=sec2x(1−tan x+1−tan x)(1−tan x)2=2 sec2 x(1−tan x)2