(i) Let E=limx→π6√3 sin x−cos xx−π6=limx→π62(√32 sin x−12 cos x)x−π6
=limx→π62(sin x cos π6−sin π6 cos x)x−π6
=limx→π62[sin(x−π6)]x−π6
On putting x−π6=h as x→π6, then h→0
∴E=limh→02 sin hh=2×1=2
(ii) Given, f(x)=1+x+x22+...+x100100
On differentiating both sides w.r.t. x, we get
f′(x)=0+1+2x2+...+100x99100
⇒f′(x)=1+x+x2+...+x99
⇒f′(1)=1+1+12+...+199
=100