wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) Evaluate limxπ63 sin xcos xxπ6.

(ii) If f(x)=1+x+x22+...+x100100, then find the value of f'(1).

Open in App
Solution

(i) Let E=limxπ63 sin xcos xxπ6=limxπ62(32 sin x12 cos x)xπ6

=limxπ62(sin x cos π6sin π6 cos x)xπ6

=limxπ62[sin(xπ6)]xπ6

On putting xπ6=h as xπ6, then h0

E=limh02 sin hh=2×1=2

(ii) Given, f(x)=1+x+x22+...+x100100

On differentiating both sides w.r.t. x, we get

f(x)=0+1+2x2+...+100x99100

f(x)=1+x+x2+...+x99

f(1)=1+1+12+...+199

=100


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon