1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Use of Trigonometric Table
i Evaluate ...
Question
(i) Evaluate
sin
−
1
(
sin
2
π
3
)
(ii) Show that:
tan
−
1
(
cos
x
1
−
sin
x
)
=
π
4
−
x
2
Open in App
Solution
(i)
sin
−
1
(
sin
2
π
3
)
=
sin
−
1
(
√
3
2
)
=
2
n
π
±
π
3
.... (general solution)
(ii)
cos
x
1
−
sin
x
=
cos
2
(
x
2
)
1
−
sin
2
(
x
2
)
=
cos
2
x
2
−
sin
2
x
2
sin
2
x
2
+
cos
2
x
2
+
2
cos
(
x
2
)
sin
(
x
2
)
=
{
cos
(
x
2
)
+
sin
(
x
2
)
}
{
cos
(
x
2
)
−
sin
(
x
2
)
}
{
cos
(
x
2
)
+
sin
(
x
2
)
}
2
=
cos
(
x
2
)
−
sin
(
x
2
)
cos
(
x
2
)
+
sin
(
x
2
)
Dividing numerator and denominator by
cos
(
x
2
)
we get
cos
x
1
−
sin
x
=
1
−
tan
x
2
1
+
tan
x
2
=
tan
(
π
4
−
x
2
)
Now,
tan
−
1
(
tan
(
π
4
+
x
2
)
)
=
π
4
−
x
2
Hence,
tan
−
1
(
cos
x
1
−
sin
x
)
=
π
4
−
x
2
Suggest Corrections
0
Similar questions
Q.
Prove that:
tan
−
1
(
√
1
+
cos
x
+
√
1
−
cos
x
√
1
+
cos
x
−
√
1
−
cos
x
)
=
π
4
−
x
2
, where
π
<
x
<
3
π
2
Q.
Prove that
tan
−
1
(
√
1
+
cos
x
+
√
1
−
cos
x
√
1
+
cos
x
−
√
1
−
cos
x
)
=
π
4
−
x
2
if
π
<
x
<
3
π
2
Q.
Evaluate :
i)
tan
−
1
(
1
√
3
)
ii)
sin
−
1
(
−
1
2
)
Q.
(i) Evaluate
l
i
m
x
→
1
(
2
x
−
3
)
(
√
x
−
1
)
2
x
2
+
x
−
3
(ii) Differentiate
x
+
s
i
n
x
x
+
c
o
s
x
with respect to x.
Q.
Prove that
t
a
n
−
1
(
√
1
+
c
o
s
x
+
√
1
−
c
o
s
x
√
1
+
c
o
s
x
−
√
1
−
c
o
s
x
)
=
π
4
−
x
2
,
where
π
<
x
<
3
π
2
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Adaptive Q10
MATHEMATICS
Watch in App
Explore more
Use of Trigonometric Table
Standard IX Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app