wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) Evaluate sin1(sin2π3)
(ii) Show that: tan1(cosx1sinx)=π4x2

Open in App
Solution

(i)
sin1(sin2π3)=sin1(32)=2nπ±π3 .... (general solution)

(ii)
cosx1sinx=cos2(x2)1sin2(x2)
=cos2x2sin2x2sin2x2+cos2x2+2cos(x2)sin(x2)

={cos(x2)+sin(x2)}{cos(x2)sin(x2)}{cos(x2)+sin(x2)}2
=cos(x2)sin(x2)cos(x2)+sin(x2)
Dividing numerator and denominator by cos(x2) we get
cosx1sinx=1tanx21+tanx2=tan(π4x2)
Now, tan1(tan(π4+x2))=π4x2

Hence, tan1(cosx1sinx)=π4x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q10
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon