(i) Evaluate limx→1(2x−3)(√x−1)2x2+x−3 (ii) Differentiate x+sin xx+cos x with respect to x.
=limx→1(2x−3)(√x−1)2x2+x−3
=limx→1(2x−3)(√x−1)(√x+1)(2x2+x−3)(√x+1)
[multiplying numerator and denominator by(√x+1)]
=limx→1(2x−3)(x−1)(2x2+x−3)(√x+1)
=limx→1(2x−3)(x−1)(2x+3)(x−1)(√x+1)
=limx→12x−3(2x+3)(√x+1)
=2×1−3(2×1+3)(√1+1)=−110
(ii)We have,ddx(x+sin xx+cos x)
=(x+cos x)ddx(x+sin x)−(x+sin x)ddx(x+cos x)(x+cos x)2
=(x+cos x)(1+cos x)−(x+sin x)(1−sin x)(x+cos x)2
=(x+ x cos x+cos x+cos2 x−x−sin x+ xsin x+sin2 x)(x+cos x)2
=x(cos x+sin x)=cos x−sin x+(cos2 x+sin2 x)(x+cos x)2
=x(cos x+sin x)+cos x−sin x+1(x+cos x)2