(i) Using section formula
Given points are
(1,−2,3) and (3,4,−5)
Consider the points
P(x,y,z) that divides line segment in ratio
2:3 internally
We know that, coordinates of point that divides line segment joining
(x1,y1,z1) & (x2,y2,z2) in the ratio
m:n
internally is,
P(x,y,z)
=(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n) ...(i)
Here,
x1=1,y1=−2,z1=3
x2=3,y2=4,z2=−5
m=2,n=3
Putting these values in equation (i), then we get (x,y,z)
=(2(3)+3(1)2+3,2(4)+3(−2)2+3,2(−5)+3(3)2+3)
=(6+35,8−65,−10+95)
=(95,25,−15)
(ii) Using section formula
Given points are
(1,−2,3) and (3,4,−5)
Consider the points
P(x,y,z) that divides line segment in ratio
2:3 externally
We know that, coordinates of point that divides line segment joining
(x1,y1,z1) & (x2,y2,z2) in the ratio
m:n
externally is,
P(x,y,z)
=(mx2−nx1m−n,my2−ny1m−n,mz2−nz1m−n) ...(i)
Here,
x1=1,y1=−2,z1=3
x2=3,y2=4,z2=−5
m=2,n=3
Putting these values in equation (i), then we get (x,y,z)
=(2(3)−3(1)2−3,2(4)−3(−2)2−3,2(−5)−3(3)2−3)
=(6−3(−1),8+6(−1),−19(−1))
=(3(−1),14(−1),−19(−1))
=(−3,−14,19)