(i) Find the derivative of x2cos x+5, using first principle.
(ii) For the function f(x)=⎧⎪⎨⎪⎩a+bx,x<24,x=2b−ax,x>2
limx→2f(x)=f(2). Find the values of a and b.
(i) −x2sin x+2x cos x
(ii) a=−45 and b=125
Find k so that limx→2 f(x) may exist, where f(x)={2x+3,x≤2x+k,x>2
If the derivative of the function f(x)={bx2+ax+4; x≥−1ax2+b; x<−1′ is continuous everywhere. Then
Suppose f(x) = ⎧⎪⎨⎪⎩a+bxx<14x=1and ifb−axx>1 limx→1=f(1), what are possible values of a and b?