(i) Given : Points (2,3,5) and (4,3,1)
Let P(2,3,5) and Q(4,3,1) be the points.
Distance PQ
PQ=√(x2−x1)2+(y2−y1)2+(z2−z1)2
Here,
x1=2,y1=3,z1=5
x2=4,y2=3,z2=1
PQ=√(4−2)2+(3−3)2+(1−5)2
=√4+0+16
=√20
=2√5
Thus, the required distance is 2√5 units
(ii) Given : Points (−3,7,2) and (2,4,−1)
Let P(−3,7,2) and Q(2,4,−1) be the points.
Distance PQ
PQ=√(x2−x1)2+(y2−y1)2+(z2−z1)2
Here,
x1=−3,y1=7,z1=2
x2=2,y2=4,z2=−1
PQ=√(2−(−3))2+(4−7)2+(−1−2)2
=√25+9+9
=√43
Thus, the required distance is √43 units
(iii) Given : Points (−1,3,−4) and (1,−3,4)
Let P(−1,3,−4) and Q(1,−3,4) be the points.
Distance PQ
PQ=√(x2−x1)2+(y2−y1)2+(z2−z1)2
Here,
x1=−1,y1=3,z1=−4
x2=1,y2=−3,z2=4
PQ=√(−1−1)2+(−3−3)2+(4+4)2
=√4+36+64
=√104
=2√26
Thus, the required distance is 2√26 units
(iv) Given : Points (2,−1,3) and (−2,1,3)
Let P(2,−1,3) and Q(−2,1,3) be the points.
Distance PQ
PQ=√(x2−x1)2+(y2−y1)2+(z2−z1)2
Here,
x1=2,y1=−1,z1=3
x2=−2,y2=1,z2=3
PQ=√(−2−2)2+(1−(−1))2+(3−3)2
=√16+4+0
=√20
=2√5
Thus, the required distance is 2√5 units