(i) Find the integral: ∫dxx2−6x+13
(ii) Find the integral: ∫dx3x2+13x−10
(iii) Find the integral: ∫dx√5x2−2x
=∫dxx2−6x+9+4
=∫dxx2−2.3.x+32+4
=∫dx(x−3)2+4=∫dx(x−3)2+22
Using formula dxx2+a2=1atan−1xa+C
=12tan−1(x−32)+C
Where C is constant of integration.
(ii)∫dx3x2+13x−10
∫dx3(x2+133x−103)
=13∫dxx2+133x−103
=13∫dxx2+133x+(136)2−(136)2−103
=13∫dx(x+136)2−169+12036
=13∫dx(x+136)2−28936
=13∫dx(x+136)2−(176)2
Using formula
∫dxx2−a2=12alog∣∣∣x−ax+a∣∣∣+C
=13×12(176)×log∣∣
∣
∣
∣∣x+136−176x+136+176∣∣
∣
∣
∣∣+C
Where C is constant of integration.
=117×log∣∣
∣
∣
∣∣x−46x+306∣∣
∣
∣
∣∣+C
=117×log∣∣
∣
∣
∣∣x−23x+5∣∣
∣
∣
∣∣+C
=117×log∣∣∣3x−23(x+5)∣∣∣+C
=117×log∣∣∣3x−2x+5∣∣∣−117log 3+C
=117×log∣∣∣3x−2x+5∣∣∣+C1
Where C1=C−117log 3
(iii) ∫dx√5x2−2x
=∫dx√5(x2−25x)
=1√5∫dx√x2−25x
=1√5∫dx√x2−25x+(15)2−(15)2
=1√5∫dx√(x−15)2−(15)2
=1√5log∣∣
∣∣(x−15)+√(x−15)2−(15)2∣∣
∣∣+C
[∵∫dx√x2−a2=log|x+√x2−a2|+C]
=1√5log∣∣
∣∣x−15+√x2+(15)2−2(x)(15)−(15)2∣∣
∣∣+C
=1√5log∣∣∣x−15+√x2−2x5∣∣∣+C
Where C is constant of integration