wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) Find the integral: dxx26x+13

(ii) Find the integral: dx3x2+13x10

(iii) Find the integral: dx5x22x


Open in App
Solution

(i) dxx26x+13

=dxx26x+9+4

=dxx22.3.x+32+4

=dx(x3)2+4=dx(x3)2+22

Using formula dxx2+a2=1atan1xa+C

=12tan1(x32)+C

Where C is constant of integration.

(ii)dx3x2+13x10

dx3(x2+133x103)

=13dxx2+133x103

=13dxx2+133x+(136)2(136)2103

=13dx(x+136)2169+12036

=13dx(x+136)228936

=13dx(x+136)2(176)2

Using formula

dxx2a2=12alogxax+a+C

=13×12(176)×log∣ ∣ ∣ ∣x+136176x+136+176∣ ∣ ∣ ∣+C

Where C is constant of integration.

=117×log∣ ∣ ∣ ∣x46x+306∣ ∣ ∣ ∣+C

=117×log∣ ∣ ∣ ∣x23x+5∣ ∣ ∣ ∣+C

=117×log3x23(x+5)+C

​​​​​​​=117×log3x2x+5117log 3+C

​​​​​​​=117×log3x2x+5+C1

Where C1​​​​​​​=C117log 3


(iii) dx5x22x

=dx5(x225x)

=15dxx225x

=15dxx225x+(15)2(15)2

=15dx(x15)2(15)2

=15log∣ ∣(x15)+(x15)2(15)2∣ ∣+C

[dxx2a2=log|x+x2a2|+C]

=15log∣ ∣x15+x2+(15)22(x)(15)(15)2∣ ∣+C

=15logx15+x22x5+C

Where C is constant of integration


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon