ΔGoR=ΔGoAgCl−(ΔGoAg++ΔGoCl−)=−109−77−(−129)=−57kJmo1−1
Eoce11=−ΔGoRnF=57×1031×96500=0.59V
(II) The cell reaction is-
Ag+(aq)+C1−(aq)→=AgCl(s)
ΔGoR=2.303RTlog10Ksp(AgCl)
log10Ksp(AgCl)=−57×1032.303×8.314×298=−9.989≈−10
(III) ⋅. Ksp(AgCl)=10−10M2
[Ag+]sat=√Ksp(AgCl)=10−5M
Moles of Zn =6.539×10−265.39=10−3
2Ag+(aq)+Zn (s) →=2Ag(s)+Zn2+(aq)
Applying Nemst equation for the above reaction,
E=Eo−0.0592log10[Zn2+][Ag+]2
At equilibrium, Ece11=0;Eoce11=1.56V
0=1.56−0.0592log10[Zn2+][Ag+]2
log10[Zn2+][Ag+]2=1.56×20.059=52.88
Since the equilibrium constant Kc for the reaction,
(IV) 2Ag+(aq)+Zn(s)→2Ag(s)+Zn2+(aq) is very high i.e. 1052.88, so the reaction will almost go to completion. Therefore, the moles of Ag precipitated is 10−5 in 1000 ml solution. ∵Ksp=10−10=[Ag+][Cl−]
Since, it is asked for 100 ml Solution so the no. of mole of Ag+ ppt. =10−51000×100=10−6moles