wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) secθ1secθ+1=sin2θ(1+cosθ)2

(ii) secθtanθsecθ+tanθ=cos2θ(1+sinθ)2

Open in App
Solution

(i) secθ1secθ+1=sin2θ(1+cosθ)2L.H.S=secθ1secθ+1=(1cosθ1)(1cosθ+1)=1cosθcosθ1+cosθcosθ=1cosθ1+cosθMultiplying numerator and denominator by (1+cosθ), we get=1cosθ)(1+cosθ)(1+cosθ)2=(1cos2θ)(1+cosθ)2=sin2θ(1+cosθ)2=R.H.S

Hence proved

(ii) secθtanθsecθ+tanθ=cos2θ(1+sinθ)2LHS=secθtanθsecθ+tanθRationalizing the denominator by multiplying and dividing with secθ+tanθ , we getLHS=secθtanθsecθ+tanθ×secθ+tanθsecθ+tanθ=sec2θtan2θ(secθ+tanθ)2=1sec2θ+tan2θ+2 secθ tanθ=11cos2θ+sin2θcos2θ+2×1cosθ×sinθcosθ=11+sin2θ+2 sinθcos2θ=cos2θ1+sin2θ+2 sinθ=cos2θ(1+sinθ)2=RHS

Hence proved


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon