(i) secθ−1secθ+1=sin2θ(1+cosθ)2
(ii) secθ−tanθsecθ+tanθ=cos2θ(1+sinθ)2
(i) secθ−1secθ+1=sin2θ(1+cosθ)2L.H.S=secθ−1secθ+1=(1cosθ−1)(1cosθ+1)=1–cosθcosθ1+cosθcosθ=1–cosθ1+cosθMultiplying numerator and denominator by (1+cosθ), we get=1−cosθ)(1+cosθ)(1+cosθ)2=(1–cos2θ)(1+cosθ)2=sin2θ(1+cosθ)2=R.H.S
Hence proved
(ii) secθ−tanθsecθ+tanθ=cos2θ(1+sinθ)2LHS=secθ−tanθsecθ+tanθRationalizing the denominator by multiplying and dividing with secθ+tanθ , we getLHS=secθ−tanθsecθ+tanθ×secθ+tanθsecθ+tanθ=sec2θ−tan2θ(secθ+tanθ)2=1sec2θ+tan2θ+2 secθ tanθ=11cos2θ+sin2θcos2θ+2×1cosθ×sinθcosθ=11+sin2θ+2 sinθcos2θ=cos2θ1+sin2θ+2 sinθ=cos2θ(1+sinθ)2=RHS
Hence proved