(i) If 0≤x≤π and x lies in the IInd quadrant such that sin x=14. Find the values of cos x2, sin x2 and tan x2.
(ii) If cos θ=45 and θ is acute, find tan 2θ
(iii) If θ=45 and 0<θ<π2, find the value of sin 4θ.
(i) Since x lies in IInd quadrant
⇒ π2<x<π
⇒ π4<x2<π2, which means x2 lies in 1st quad.
Now,
sin x=14=ph⇒p=1⇒b=√15
So, cos x=bh=−√154
(-ve due to IInd quad)
Thus,
cos x2=√1+cos x2=√1−√1542=√4−√158sin x2=√1−cos x2=√1+√1542=√4−√158
tanx2=sin x2cos x2=√4+√158√4−√158=√4+√154−√15=√(1+√15)(4+√15)(4−√15)(4+√15)=4+√15
(ii) Since θ in acute, so 0≤2θ<π
Now, cos θ=45=bh
⇒ b=4 ⇒ p=3
h = 5
∴ sin θ=ph=35tan θ=pb=34so, tan 2θ=2 tan θ1−tan2 θ=2.341−(34)2=64716=247
(iii) sin θ=45=ph⇒p=4
⇒ b = 3
h = 5
∴ cos θ=bh=35
Now, sin θ. cos θ=2.45.35=2425
cos 2θ=cos2θ−sin2 θ=(35)2−(45)2=−725So, sin 4θ=sin2.2θ=2sin2θ.cos2θ=2.2425.(−725)=−336625