wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If 0xπ and x lies in the IInd quadrant such that sin x=14. Find the values of cos x2, sin x2 and tan x2.

(ii) If cos θ=45 and θ is acute, find tan 2θ

(iii) If θ=45 and 0<θ<π2, find the value of sin 4θ.

Open in App
Solution

(i) Since x lies in IInd quadrant

π2<x<π
π4<x2<π2, which means x2 lies in 1st quad.

Now,

sin x=14=php=1b=15

So, cos x=bh=154

(-ve due to IInd quad)

Thus,

cos x2=1+cos x2=11542=4158sin x2=1cos x2=1+1542=4158

tanx2=sin x2cos x2=4+1584158=4+15415=(1+15)(4+15)(415)(4+15)=4+15

(ii) Since θ in acute, so 02θ<π

Now, cos θ=45=bh
b=4 p=3

h = 5

sin θ=ph=35tan θ=pb=34so, tan 2θ=2 tan θ1tan2 θ=2.341(34)2=64716=247

(iii) sin θ=45=php=4

b = 3

h = 5

cos θ=bh=35

Now, sin θ. cos θ=2.45.35=2425

cos 2θ=cos2θsin2 θ=(35)2(45)2=725So, sin 4θ=sin2.2θ=2sin2θ.cos2θ=2.2425.(725)=336625


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon