The correct option is C Both I and II are true
Statement I : If a > 0 then limx→∞[ax+b]x=a
We have ax+b−1≤[ax+b]<ax+b
a+bx−1x≤[ax+b]x<a+bx
limx→∞a+bx−1x≤limx→∞[ax+b]x<limx→∞a+bx
So,limx→∞[ax+b]x=a
II:limx→π2[sinx]=0
Here, when x→π2 then sinx→1
sinx is near to 1 but not 1.
So , limx→π2[sinx]=0