wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If A=1-202 130-21, find A−1. Using A−1, solve the system of linear equations
x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7

(ii) A=3-422 351 01, find A−1 and hence solve the following system of equations:
3x − 4y + 2z = −1, 2x + 3y + 5z = 7, x + z = 2

(iii) A=1-202130-21 and B=72-6-21-3-42 5, find AB. Hence, solve the system of equations:
x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

(iv) If
A=120-2 -1-20-11, find A−1. Using A−1, solve the system of linear equations
x − 2y = 10, 2xyz = 8, −2y + z = 7

(v) Given
A=22-4-42-42-1 5, B=1-10234012, find BA and use this to solve the system of equations
y + 2z = 7, xy = 3, 2x + 3y + 4z = 17

(vi)
If A=2311 223 1-1, find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2yz = 8.
(vii) Use product 1-1202-33-24-20192-361-2 to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.

Open in App
Solution

(i) Here, A=1-202130-21 A=1 1+6+22-0+0-4-0 =7+4+0 =11Let Cij be the cofactors of the elements aij in A=aij. Then,C11=-11+113-21=7, C12=-11+22301=-2, C13=-11+3 210-2=-4C21=-12+1-20-21=2, C22=-12+21001=1, C23=-12+31-20-2=2C31=-13+1-2013=-6, C32=-13+21023=-3, C33=-13+31-221=5adj A=7-2-4212-6-35T = 72-6-21-3-425A-1=1Aadj A=11172-6-21-3-425or, AX=Bwhere, A=1-202130-21,X=xyz and B=1087Now, X=A-1BX=11172-6-21-3-4251087X=11170+16-42-20+8-21-40+16+35xyz=11144-3311 x=4, y=-3 and z=1

(ii) Here, A=3-42235101 A=3 3-0+42-5+20-3 =9-12-6 =-9Let Cij be the cofactors of the elements aij in A=aij. Then,C11=-11+13501=3, C12=-11+22511=3, C13=-11+3 2310=-3C21=-12+1-4201=4, C22=-12+23211=1, C23=-12+33-410=-4C31=-13+1-4235=-26, C32=-13+23225=-11, C33=-13+33-423=17adj A=33-341-4-26-1117T = 34-2631-11-3-417A-1=1Aadj A=1-934-2631-11-3-417AX=BHere, A=3-42235101, X=xyz and B=-172X=A-1BX=1-934-2631-11-3-417-172X=1-9-3+28-52-3+7-223-28+34xyz=1-9-27-189 x=3, y=2 and z=-1

(iii) Here, A=1-202130-21 and B=72-6-21-3-425AB=1-202130-21 72-6-21-3-425AB=7+4+02-2+0-6+6+014-2-124+1+6-12-3+150+4-40-2+20+6+5 =110001100011AB=11100010001AB=11I3111AB=I3111BA=I3A-1=111BA-1=11172-6-21-3-425X=A-1BX=11172-6-21-3-4251087xyz=11170+16-42-20+9-21-40+16+35xyz=11144-3311 x=4, y=-3 and z=1

(iv) Here, A=1 20-2-1-20-11A=1-1-2+22 =-3+4 =1Let Cij be the cofactors of the elements aij in A=aij. Then,C11=-11+1-1-2-1 1=-3, C12=-11+2-2-2 0 1=2, C13=-11+3 -2-1 0-1=2C21=-12+120-11=-2, C22=-12+21001=1, C23=-12+3120-1=1C31=-13+120-1-2=-4, C32=-13+210-2-2=2, C33=-13+312-2-1=3adj A=-322-211-423T = -3-2-4212213A-1=1Aadj A =11-3-2-4212213 =-3-2-4212213We know that, AT-1=A-1T.Here, C=ATi.e.,C=1-202-1-10-21 C-1=-322-211-423or, CX=Bwhere, C=1-202-1-10-21, X=xyz and B=1087Now, X=C-1BX=-322-211-4231087X=-30+16+14-20+8+7-40+16+21xyz=0-5-3 x=0, y=-5 and z=-3.

(v) Here, A=22-4-42-42-15 and B=1-10234012BA=1-1023401222-4-42-42-15BA=2+4+02-2+0-4+4+04-12+84+6-4-8-12+200-4+40+2-20-4+10 =600060006BA=6100010001BA=6I3B16A=I3B-1=16AB-1=1622-4-42-42-15Now, BX=Cwhere, B=1-10234012, X=xyz and C=3177 X=B-1CX=1622-4-42-42-153177xyz=166+34-28-12+34-286-17+35xyz=1612-624 x=2, y=-1 and z=4.

(vi) We have, A=2311 223 1-1.
A=231122-31-1=2-2-2-3-1+6+11+6=-8-15+7=-160
So, A is invertible.
Let Cij be the co-factors of the elements aij in A[aij]. Then,
C11=-11+1221-1=-2-2=-4C12=-11+212-3-1=-1-1+6=-5C13=-11+312-31=1+6=7
C21=-12+1311-1=3+1=4C22=-12+221-3-1=-2+3=1C23=-12+323-31=-12+9=-11
C31=-13+13122=6-2=4C32=-13+22112=-14-1=-3C33=-13+32312=4-3=1
Adj A=-4-5741-114-31T=-444-51-37-111A-1=Adj AA=1-16-444-51-37-111
Now, the given system of equations is expressible as
21-332112-1xyz=1348
Or AT X = B, where X=xyz, B=1348
Now, AT=A=-160
So, the given system of equations is consistent with a unique solution given by
X=AT-1B=A-1TB
xyz=-116-444-51-37-111T1348xyz=-116-4-5741-114-311348xyz=-116-52-20+5652+4-8852-12+8xyz=-116-16-3248xyz=12-3
Hence, x = 1, y = 2 and z = −3 is the required solution.

(vii) Suppose, A = 1-1202-33-24 B=-20192-361-2

A×B=1-1202-33-24-20192-361-2=-2-9+120-2+21+3-40+18-180+4-30-6+6-6-18+240-4+43+6-8=100010001

Since, A × B = I,
B = A−1 .....(1)

Now, the given system of equations is

x + 3z = 9
x + 2y − 2z = 4
2x − 3y + 4z = −3

This can also be represented as,

103-12-22-34xyz=94-3
Here, we can observe that 103-12-22-34=AT
So, ATxyz=94-3

Multiply the above expression by AT-1.

xyz=AT-194-3xyz=A-1T94-3 xyz=BT94-3 Using (1)

xyz=-20192-361-2T94-3=-2960211-3-294-3=-18+36-180+8-39-12+6=053

Hence, x = 0, y = 5 and z = 3.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon