(i) If A = {1,2,3,4,5},
B= {4,5,6,7,8},
C= {7,8,9,10,11} and
D= {10,11,12,13,14}. Find :
(i) A∪B (ii) A∪C
(iii) B∪C (iv) B∪D
(v) A∪B∪C (vi) A∪B∪D
(vii) B∪C∪D (viii) A∩(B∪C)
(ix) (A∩B)∩(B∩C)
(x) (A∪D)∩(B∪C)
(i) A = {1,2,3,4,5}
B= {4,5,6,7,8}
So, A∪B = {x:x ϵ A or x ϵ B}
= {1,2,3,4,5,6,7,8}
(ii) A∪C = {x:x ϵ A or x ϵ C}
= {1,2,3,4,5,6,7,8,9,10,11}
(iii) B∪C = {x:x ϵ B or x ϵ C}
= {4,5,6,7,8,9,10,11}
(iv) B∪D = {x:x ϵ B or x ϵ D}
= {4,5,6,7,8,9,10,11,12,13,14}
(v) A∪B∪C = {x|x ϵ A or x ϵ B or x ϵ C}
= {1,2,3,4,5,6,7,8,910,11}
(vi) A∪B∪D = {x|x ϵ B or x ϵ C or x ϵ D}
= {4,5,6,7,8,9,10,11,12,13,14}
(viii) A∩(B∪C) = all those elements which are common to A and B∪C
= {x|x ϵ A and x ϵ B∪C}
Now, B∪C = {4,5,6,7,8,9,10,11}
∴A∩(B∪C) = {1,2,3,4,5} \cap {4,5,67,8,9,10,11}
= {4, 5}
(ix) (A∩B)∩(B∩C) = {x|x ϵ (A∩B) andx ϵ (B∩C)}
Now,
A∩B = {x|x epsilon A and x ϵ B}
i.e., elements which are common to A and B
∴ A∩B = {1,2,3,4,5} ∩ {4,5,6,7,8}
= {4, 5}
Also,
B∩C= {4,5,6,7,8} ∩ {7,8,9,10,11}
= {7,8}
Hence, (A∩B)∩(B∩C)=4.5∩7,8
= ϕ
[∴there is no element common in{4,5} and {7,8}]
(x) (A∪D)∩(B∪C) = {x|x ϵ (A∪D) or x ϵ (B∪C)}
Now,
A∪D = {1,2,3,4,5,10,11,12,13,14} and B∪C = {4,5,6,7,8,9,10,11}
∴(A∪D)∩ {B∪C}= {4,5,10,11}