wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If cos x=-35 and x lies in the IIIrd quadrant, find the values of
cosx2, sinx2, sin 2x.

(ii) If cos x=-35 and x lies in IInd quadrant, find the values of sin 2x and sinx2

Open in App
Solution

(i) cos x=-35

Using the identity cos2θ=cos2θ-sin2θ, we get

cosx=cos2x2-sin2x2-35=2cos2x2-11-35=2cos2x225=2cos2x215=cos2x2cosx2=±15

It is given that x lies in the third quadrant. This means that x2 lies in the second quadrant.

cosx2=-15
Again,

cosx=cos2x2-sin2x2-35=-152-sin2x2-35=15-sin2x2-15-35=-sin2x245=sin2x2sinx2=±25

It is given that x lies in the third quadrant. This means that x2 lies in the second quadrant.

sinx2=25

Now,sinx = 1-cos2xsinx=1--352sinx=1-925=±45

Since x lies in the third quadrant, sinx is negative.

sinx = -45sin2x=2sinxcosxsin2x=2×-45×-35sin2x=2425

(ii) cos x=-35
sinx=1-cos2x=1--35sinx=±45
Here, x lies in the second quadrant.

sinx=45

We know,

sin2x = 2sinx cosx

sin2x=2×45×-35=-2425
Now,
cosx=1-2sin2x22sin2x2=1--35=85sin2x2=45sinx2=±25

Since x lies in the second quadrant, x2 lies in the first quadrant.
sinx2=25

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon