Question 126 (i)
If Δ is an operation, such that for integers a and b. We have aΔb=a×b−2×a×b+b×b (−a)×b+b×b, then find
4 Δ (−3)
Also, show that 4 Δ (−3) ≠ (−3) Δ 4
We have, a Δ b=a×b−2×a×b+b×(b)(−a)×b+b×b
Now, put a = 4 and b = (-3)
4Δ(−3)=4×(−3)−2×4(−3)+(−3)×(−3)×(−4)×(−3)+(−3)×(−3)=−12−2×(−12)+(9)(12)+9=−12+24+108+9=129
Now, put a = -3 and b = 4
⇒(−3)Δ4=(−3)×4−2×(−3)×(4)+4×4[−(−3)]×4+4×4=(−12)+24+16(3)×4+16=(−12)+24+192+16=220
Clearly, 4Δ(−3)≠(−3)Δ4