(i) If nP4:nP5=1:2 find n.
(ii) If n−1P3:n+1=5:12, find n.
(i)nP4:nP5=1:2
n!(n−4)!n!(n−5)!=12
n!(n−4)!×(n−5)!n!=12
1n−4=12 ⇒n=6
(ii)(n−1)(n−2)(n−3)(n+1)n(n−1)=512
⇒12(n−2)(n−3)=5(n+1)n
⇒7n2−65n+72=0⇒7n2−56n−9n+72=0
⇒7n(n−8)−9(n−8)=0⇒(n−8)(7n−9)=0⇒n=8.