(i)tanθ+sinθ=m
Squaring both sides we get
tan2θ+sin2θ+2tanθsinθ=m2 ........(1)
tanθ−sinθ=n
Squaring both sides we get
tan2θ+sin2θ−2tanθsinθ=n2 .........(2)
Subtract (2) from (1) we get
m2−n2=tan2θ+sin2θ+2tanθsinθ−tan2θ−sin2θ+2tanθsinθ=4tanθsinθ
⇒m2−n2=4√tan2θsin2θ
⇒m2−n2=4√sin2θcos2θ(1−cos2θ)
⇒m2−n2=4√sin2θcos2θ−sin2θcos2θcos2θ
⇒m2−n2=4√tan2θ−sin2θ
⇒m2−n2=4√(tanθ+sinθ)(tanθ−sinθ)
∴m2−n2=4√mn
Hence proved.
(ii) Consider xasinθ+ybcosθ=1
Squaring both sides, we get
(xasinθ+ybcosθ)2=1
⇒x2a2sin2θ+y2b2cos2θ+2xasinθ×ybcosθ=1
⇒x2a2sin2θ+y2b2cos2θ+2xyabsinθcosθ=1 .........(1)
Consider xasinθ−ybcosθ=1
Squaring both sides, we get
(xasinθ−ybcosθ)2=1
⇒x2a2sin2θ+y2b2cos2θ−2xasinθ×ybcosθ=1
⇒x2a2sin2θ+y2b2cos2θ−2xyabsinθcosθ=1 .........(2)
Adding (1) and (2) we get
⇒x2a2sin2θ+y2b2cos2θ+2xyabsinθcosθ+x2a2sin2θ+y2b2cos2θ−2xyabsinθcosθ=1+1
⇒x2a2(sin2θ+cos2θ)+y2b2(sin2θ+cos2θ)=2
We know that sin2θ+cos2θ=1
∴x2a2+y2b2=2
Hence proved.