wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If tanθ+sinθ=m and tanθsinθ=n, show that m2n2=4mn
(ii) If xasinθ+ybcosθ=1 and xacosθybsinθ=1 prove that x2a2+y2b2=2

Open in App
Solution

(i)tanθ+sinθ=m

Squaring both sides we get

tan2θ+sin2θ+2tanθsinθ=m2 ........(1)

tanθsinθ=n

Squaring both sides we get

tan2θ+sin2θ2tanθsinθ=n2 .........(2)

Subtract (2) from (1) we get

m2n2=tan2θ+sin2θ+2tanθsinθtan2θsin2θ+2tanθsinθ=4tanθsinθ

m2n2=4tan2θsin2θ

m2n2=4sin2θcos2θ(1cos2θ)

m2n2=4sin2θcos2θsin2θcos2θcos2θ

m2n2=4tan2θsin2θ

m2n2=4(tanθ+sinθ)(tanθsinθ)

m2n2=4mn

Hence proved.

(ii) Consider xasinθ+ybcosθ=1

Squaring both sides, we get

(xasinθ+ybcosθ)2=1

x2a2sin2θ+y2b2cos2θ+2xasinθ×ybcosθ=1

x2a2sin2θ+y2b2cos2θ+2xyabsinθcosθ=1 .........(1)

Consider xasinθybcosθ=1

Squaring both sides, we get

(xasinθybcosθ)2=1

x2a2sin2θ+y2b2cos2θ2xasinθ×ybcosθ=1

x2a2sin2θ+y2b2cos2θ2xyabsinθcosθ=1 .........(2)

Adding (1) and (2) we get

x2a2sin2θ+y2b2cos2θ+2xyabsinθcosθ+x2a2sin2θ+y2b2cos2θ2xyabsinθcosθ=1+1

x2a2(sin2θ+cos2θ)+y2b2(sin2θ+cos2θ)=2

We know that sin2θ+cos2θ=1

x2a2+y2b2=2

Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon