wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

(i) If the point P(2, 2) is equidistant from the points (a+b, b-a) and (a-b, a+b), prove that bx = ay.

(ii) If thedistances of P(x, y) from A(5, 1) and B (-1, 5) are equal then prove that 3x = 2y.

Open in App
Solution

(i)

Distace between the points (x, y) and (a+b, b-a) & (a-b, a+b) is equal

[x(a+b)]2+[y(ba)]2=[x(ab)]2+[y(a+b)]2

x2+(a+b)22x(a+b)+y2+(ba)22y(ba)=x2+(ab)22x(ab)+y2+(a+b)22y(a+b)

2ax2bx2by+2ay=2ax+2bx2ay2by

aybx=bxay

2ay=2bx

bx=ay



(ii)

It is given that P is equidistant from A and B.
So, PA = PB
Using distance formula,
square root of open parentheses x subscript 2 minus x subscript 1 close parentheses squared plus open parentheses y subscript 2 minus y subscript 1 close parentheses squared end root
P A squared equals P B squared
then
open parentheses x minus 5 close parentheses squared plus open parentheses y minus 1 close parentheses squared equals open parentheses x plus 1 close parentheses squared plus open parentheses y minus 5 close parentheses squared
x squared + 25 - 10x + y squared + 1 - 2y = x squared + 1 + 2x + y squared + 25 - 10y
- 12x = -8y
3x = 2y
Hence proved


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon