(i) If the point P(2, 2) is equidistant from the points (a+b, b-a) and (a-b, a+b), prove that bx = ay.
(ii) If thedistances of P(x, y) from A(5, 1) and B (-1, 5) are equal then prove that 3x = 2y.
(i)
Distace between the points (x, y) and (a+b, b-a) & (a-b, a+b) is equal
⇒ √[x−(a+b)]2+[y−(b−a)]2=√[x−(a−b)]2+[y−(a+b)]2
⇒ x2+(a+b)2−2x(a+b)+y2+(b−a)2−2y(b−a)=x2+(a−b)2−2x(a−b)+y2+(a+b)2−2y(a+b)
⇒ −2ax−2bx−2by+2ay=−2ax+2bx−2ay−2by
⇒ ay−bx=bx−ay
⇒ 2ay=2bx
⇒ bx=ay
(ii)
It is given that P is equidistant from A and B.
So, PA = PB
Using distance formula,
then
+ 25 - 10x + + 1 - 2y = + 1 + 2x + + 25 - 10y
- 12x = -8y
3x = 2y
Hence proved