I. If the points (a,0) , (b,0) , (0,c) , (0,d) are concyclic, then ab=cd
II. If the points (1,−6),(5,2),(7,0),(−1,k) are concyclic then k=−3.
I) Let equation of circle passing through (a,0),(b,0),(0,c),(0,d) is
x2+y2+2gx+2fy+K=0
Put (a,0) a2+2ga+K=0−−−−(1)
Put (b,0) b2+2gb+K=0−−−−(2)
From (1) & (2) a2−b2+2g(a−b)=0
K=-ab and g=−(a+b)2a
and put (0,c)
c2+2fc+K=0−−−−(4)
and put (0,d)
d2+2fd+K=0−−−−(5)
f=−((k+d)
From (4)& (5),
So, K=−cd ---- (6)
From (3) & (6),
K=−ab=−cd
ab=cd. True
ii) let x2+y2+2gx+2fy+c=0
put (1,−6),(5,2),(7,0) and (−2,k) in eqn of circle and solve then get value of K