(i) If the vertices of △ABC be A(1, -3), B(4, p) and C(-9, 7) and its area is 15 square units, find the values of p.
(ii) The area of a triangle is 5 sq units. Two of its vertices are (2, 1) and (3, -2). If the third vertex is (72,y), find the value of y.
(i)
Let A(x1,y1)=A(1,−3),
B(x2,y2)=B(4,p) and
C(x3,y3)=C(−9,7).
Now
Area(ΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]⇒15=12[1(p–7)+4(7+3)–9(−3−p)]⇒15=12[10p+60]⇒|10p+60|=30⇒10p+60=−30 or 30⇒10p=−90 or −30⇒p=−9 or −3
Hence, p = -9 or p = -3
(ii)
Let A(x1,y1)=A((2,1)),
B(x2,y2)=B(3,−2) and
C(x3,y3)=C(72,y).
Now
Area(ΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]⇒5=12[2(−2−y)+3(y−1)+72(1+2)]⇒5=12[−4−2y+3y−3+212]⇒10=[y−7212]⇒10=|2y−14+212|⇒10=|2y+72|⇒20=|2y+7|⇒20=2y+7 or −20=2y+7⇒2y=20−7 or 2y=−20−7⇒2y=13 or 2y=−27⇒y=132 or y=−272