wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If x = a (θ + sin θ), y = a (1 + cos θ), prove that d2ydx2=-ay2.
(ii) If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find d2ydx2.

Open in App
Solution

(i) Here,
x=aθ+sinθ and y=a1+cosθDifferentiating w.r.t. θ, we getdxdθ=a+acosθ and dydθ=-a sinθdydx=-a sinθa+a cosθ=- sinθ1+cosθDifferentiating w.r.t. x, we getd2ydx2=-1+cosθcosθ+ sin2θ1+cosθ2dθdx =-cosθ-cos2θ- sin2θ1+cosθ2×1a+acosθ =-1+cosθa1+cosθ3 =-1a1+cosθ2 =-ay2 y=a1+cosθ

Hence proved.

(ii) Here,

x=aθ-sinθ and y=a1+cosθDifferentiating w.r.t. θ, we getdxdθ=a-acosθ, dydθ=-a sinθdydx=-a sinθa-a cosθ=- sinθ1-cosθDifferentiating w.r.t. x, we getd2ydx2=-cosθ+cos2θ+ sin2θ1-cosθ2×dθdx =-cosθ+cos2θ+ sin2θ1-cosθ2×1a-acosθ =1-cosθa1-cosθ3 =1a1-cosθ2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon