Question 105(i)
In the given figure, PQ, RS and UT are parallel lines.
If c=57∘ and a=c3, find the value of d.
Since, PQ || UT and PT is transversal.
Therefore, ∠QPT=∠UTP [alternate interior angles]⇒a+b=c⇒c3+b=c [∴a=c3, given]⇒b=c−c3⇒b=3c−c3⇒b=2c3=23×57∘∴b=38∘
Again, PQ || RS and PR is transversal.
therefore, ∠QPR+∠PRS=180∘ [corresponding angles]⇒b+d=180∘⇒d=180∘−b⇒d=180∘−38∘ [∴b=48∘]⇒d=142∘