wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I=ex(1+ex)(2+ex)dx

Open in App
Solution

I=ex(1+ex)(2+ex)dx
let ex=t
then exdr=dt
I=1(1+t)(2+t)dt
now using particle fraction, we can write
1(1+t)(2+t)=A1+t+B2+t

=A(2+t)+B(1+t)(1+t)(2+t)

(A+B)t+(2A+B)(1+t)(2+t)
compare numerator at both sides we get
A+B=0
and +2A+B=+1
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=1
A=1
then B=A=1
B=1
So I(11+t+12+t)dt
=log|1+t|log|2+t|+c
log|1+t2+t|+c
log|1+ex2+ex|+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progresssion
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon