I=∫ex(1+ex)(2+ex)dxlet ex=t
then exdr=dt
I∴=∫1(1+t)(2+t)dt
now using particle fraction, we can write
1(1+t)(2+t)=A1+t+B2+t
=A(2+t)+B(1+t)(1+t)(2+t)
(A+B)t+(2A+B)(1+t)(2+t)
compare numerator at both sides we get
A+B=0
and +2A+B=+1
− − −
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−A=−1
∴A=1
then B=−A=−1
∴B=−1
So I∫(11+t+−12+t)dt
=log|1+t|−log|2+t|+c
log|1+t2+t|+c
log|1+ex2+ex|+c