Consider the following Equation.
I=∫sinxcosx1−sin4xdx
Let t=sin2x
12sinxcosxdt=dx
Therefore,
=∫sinxcosx1−sin4x×12sinxcosxdt
=12∫11−t2dt
=12[12log(1+t1−t)]+C
=14log(1+t1−t)+C
On putting the value of t, we get
=14log(1+sin2x1−sin2x)+C
=14log(1+sin2xcos2x)+C
=14log(sec2x+tan2x)+C
Hence, this is the correct answer.