I=π∫−π2x(1+sinx)dx1+cos2x=π∫−π2xdx1+cos2x+π∫−π2x(sinx)dx1+cos2x
∵π∫−π2xdx1+cos2x=0 (∵ odd function) π∫−π2x(sinx)dx1+cos2x=4π∫0x(sinx)dx1+cos2x (∵ Even function).
∴I=4π∫0x(sinx)dx1+cos2x
I=4π∫0(π−x)(sinx)dx1+cos2x
I=4π∫0π(sinx)dx1+cos2x−I
I=4ππ∫0sinxdx1+cos2x−I
2I=4ππ∫0sinxdx1+cos2x
Let cosx=t ⇒−sinxdx=dt
I=−2π−1∫111+t2dt=2π1∫−111+t2dt=4π1∫011+t2dt=4π[tan−1t]10=4π×π4=π2
Hence, [Iπ2]=1