wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I=ππ2x(1+sinx)dx1+cos2x, Find the value of [Iπ2] (where [.] is the greatest integer function)

Open in App
Solution

I=ππ2x(1+sinx)dx1+cos2x=ππ2xdx1+cos2x+ππ2x(sinx)dx1+cos2x
ππ2xdx1+cos2x=0 ( odd function) ππ2x(sinx)dx1+cos2x=4π0x(sinx)dx1+cos2x ( Even function).
I=4π0x(sinx)dx1+cos2x
I=4π0(πx)(sinx)dx1+cos2x
I=4π0π(sinx)dx1+cos2xI
I=4ππ0sinxdx1+cos2xI
2I=4ππ0sinxdx1+cos2x
Let cosx=t sinxdx=dt
I=2π1111+t2dt=2π1111+t2dt=4π1011+t2dt=4π[tan1t]10=4π×π4=π2
Hence, [Iπ2]=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon