(i) (sin 49ocos 41o)2+(cos 41osin 49o)2
(ii) cos 48o−sin 42o
(iii) cot 40otan 50o−12(cos 35osin 55o)
(iv) (sin 27ocos 63o)2+(cos 63osin 27o)2
(v) tan 35otan 55o+cot 78otan 12o−1
(vi) sec 70ocosec 20o+sin 59ocos 31o
(vii) cosec31o−sec59o
(viii) (sin 72o+cos 18o)(sin 72o−cos 18o)
(ix) sin35o sin 55o − cos 35o cos 55o
(x) tan 48o tan 23o tan 42o tan 67o
(xi) sec 50o sin 40o+cos 40o cosec 50o
i) sin(90°-α) = cosα
and, cos(90°-α) = sinα
∴(sin49°cos41° )²+(cos41°sin49° )²
=(sin(90°−41)cos41° )²+(cos(90°−49°)sin49° )²
=1+1
=2
ii) cos 48 - sin 42=cos 48-cos(90-42)
=cos 48-cos 48
=0
iii) cot40°tan50° - 12cos35°sin55°
tan50 = tan(90-40) =cot40
Sin55=sin(90-35)=cos 35
=cot40°cot40° - 12cos35°cos35°
=1-12
(1)
=1-12
=12
=12
(iv) (sin27°cos63°)²+(cos63°sin27°)²
=(sin(90−63)°cos63°)²+(cos63°sin(90−63)°)²
= (cos63°cos63°)²+(cos63°cos63°)²
=1²+1²
=2
V)
tan35°cot55°+cot78°tan12°- 1
=tan(90−55)°cot55°+cot(90−12)°tan12°- 1
=cot55°cot55°+tan12°tan12°- 1
=1+1 - 1
=1
Vi)
sec70°cosec20°+sin59°cos31°
sec(90−70)°cosec20°+sin(90−59)°cos31°
cosec20°cosec20°+cos31°cos31°
=1+1
=2
(vii)
cosec31°−sec59°
Cosec (90-59)° - sec59°
=sec 59° - sec59°
=0
(viii)
(sin 72°+cos 18°)(sin 72°−cos 18°)
=(sin(90-18)°+cos18°)(sin(90-18)°-cos18°)
=(cos18° + cos 18°) (cos18° - cos 18°)
=0
(ix)
sin 35° sin55° - cos35° cos55°
The value of sin 35° sin55° - cos35° cos55° has to be determined. Here it is not necessary to know the values of the sine or cosine of 35 or 55. Instead use the rule: sin a*sin b - cos a*cos b = -cos(a + b)
sin 35° sin55° - cos35° cos55°
=> -cos(35 + 55)°
=> -cos 90°
=> 0
The value of sin sin 35° sin55° - cos35° cos55°= 0
(x)
tan 48° tan 23° tan 42° tan 67°
= tan48°tan23°tan42°tan67°
= tan(90–42)°tan(90–67)°tan42°tan67°
=Cot42°Cot67°tan42°tan67°
=1tan42° *tan42°*1tan67°*tan67°
=1
(Xi)
sec50°sin40°+cos40°cosec50°
Sec(90-40)°sin40° + cos(90-50)°cosec 50°
=cosec40°*sin40° + sin30°*cosec50°
=1+1
=2