wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I: lf y=sinxsin2xsin3x then yn=14[4nsin(nπ2+4x)6nsin(nπ2+6x)+2nsin(nπ2+2x)]
II: lf y=sin2xsin3xsin4x then yn=14[9nsin(nπ2+9x)+5nsin(nπ2+5x) +3nsin(nπ2+3x)+sin(nπ2+x)]
Which of the following is correct?

A
Only I is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Only II is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Both I and II are true
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Neither I nor II true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B Both I and II are true
I.y=12(2sinxsin2x)sin3x=12(cosxcos3x)sin3x

y=14(sin4x+sin2xsin6x)

y=14(4sin(π2+4x)+2sin(π2+2x)6sin(π2+6x))

y′′14(42sin(π+4x)+22sin(π+2x)62sin(π+6x))

yn=14(4nsin(nπ2+4x)+2nsin(nπ2+2x)6nsin(nπ2+6x))

II.y=12(2sin2xsin3xsin4x)=12(cosxcos5x)sin4x

y=14(2cosxsin4x)=14(sin5x+sin3xsin9x+sinx)

yn=14(5nsin(nπ2+5x)+3nsin(nπ2+3x)9nsin(nπ2+9x)+sin(nπ2+x))

Hence, both statements are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon