The correct option is A
2(n−1)sin(n−1)x−In−2
In=∫cos nxcos xdx,In−2=∫cos(n−2)xcos xdx
In+In−2=∫cos dxcos xdx+∫cos(n−2)xcos xdx
∫cos[(n−1)x+x]cos xdx+∫cos[(n−1)x−x]cos xdx
∫2cos(n−1)x cos xcos xdx=2∫cos(n−1)x dx
2n−1sin(n−1)x+c
In+In−2=2n−1x+c
In=2n−1sin(n−1)x−In−2