(i)cotθ+cscθ−1cotθ−cscθ+1
=cotθ+cscθ−(csc2θ−cot2θ)cotθ−cscθ+1
=cotθ+cscθ−(cscθ−cotθ)(cscθ+cotθ)cotθ−cscθ+1
=(cotθ+cscθ)(1−cscθ+cotθ)cotθ−cscθ+1
=cotθ+cscθ .........Result1
=cosθsinθ+1sinθ
=1+cosθsinθ .........Result2
Hence from result1 and result2 we have
cotθ+cscθ−1cotθ−cscθ+1=cotθ+cscθ=1+cosθsinθ
Hence proved.
(ii)L.H.S=1secA−tanA−1cosA
Multiplying by secA+tanA in the numerator and denominator of first term,we get
=secA+tanA(secA−tanA)(secA+tanA)−secA
=secA+tanA(sec2A−tan2A)−secA
=secA+tanA−secA since sec2A−tan2A=1
=tanA
Adding and subtracting secA, we get
=secA+tanA−secA
=1cosA−(secA−tanA)
Multiplying by secA+tanA in the numerator and denominator of second term,we get
=1cosA−(secA−tanA)(secA+tanA)(secA+tanA)
=1cosA−sec2A−tan2A(secA+tanA)
=1cosA−1(secA+tanA) since sec2A−tan2A=1
=R.H.S
∴1secA−tanA−1cosA=1cosA−1(secA+tanA)
Hence proved.