wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) sec θ (1 − sin θ) (sec θ + tan θ) = 1
(ii) sin θ(1 + tan θ) + cos θ(1 + cot θ) = (sec θ + cosec θ)

Open in App
Solution

(i) LHS=secθ(1sinθ)(secθ+tanθ) =(secθsecθsinθ)(secθ+tanθ) =(secθ1cosθ×sinθ)(secθ+tanθ) =(secθtanθ)(secθ+tanθ) =sec2θtan2θ =1 =RHS (ii) LHS=sinθ(1+tanθ)+cosθ(1+cotθ) =sinθ+sinθ×sinθcosθ+cosθ+cosθ×cosθsinθ =cosθsin2θ+sin3θ+cos2θsinθ+cos3θcosθsinθ =(sin3θ+cos3θ)+(cosθsin2θ+cos2θsinθ)cosθsinθ =(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)+sinθcosθ(sinθ+cosθ)cosθsinθ =(sinθ+cosθ)(sin2θ+cos2θsinθcosθ+sinθcosθ)cosθsinθ =(sinθ+cosθ)(1)cosθsinθ =sinθcosθsinθ+cosθcosθsinθ =1cosθ+1sinθ =secθ+cosecθ =RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon