wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) sin 2x
(ii) cos x
(iii) tan x
(iv) tan x2

Open in App
Solution

i Let f(x)= sin2x Thus, we have: f(x+h)=sin2x+hddxf(x)=limh0fx+h-fxh=limh0 sin 2x+2h-sin 2xhWe know:sin C- sin D=2 sin C-D2 cos C+D2=limh0 2 sin2x+2h-2x cos2x+2h-2x h=limh0 2×2 sin2x+2h-2x2 cos2x+2h+2x2 2h+2x-2x=limh0 2×2 sin2x+2h-2x2 cos2x+2h-2x2 2x+2h-2x2x+2h+2x=limh0 2×2 sin2x+2h-2x2 cos2x+2h-2x2 2× 2x+2h-2x22x+2h+2x= limh0 sin2x+2h-2x22x+2h-2x2limh0 2cos 2x+2h-2x22x+2h+2x =1× 2cos2x22x limh0sin2x+2h-2x22x+2h-2x2=1=cos2x2x


(ii) Let f(x) = cos x Thus, we have: f(x+h)=cos x+hddxfx=limh0f(x+h)-f(x) h= limh0cos x+h-cos xhWe know: cos C -cos D = -2sinC+D2 sinC-D2= limh0 -2sin x+h+x2 sinx+h-x2h= limh0 -2sin x+h+x2 sinx+h-x2x+h-x=limh0 -2sin x+h+x2 sinx+h-x22×x+h+xx+h-x2=limh0sinx+h-x2x+h-x2limh0 -sinx+h+x2x+h+x =1×-sinx2x limh0sinx+h-x2x+h-x2=1 =-sinx2x

(iii) Let f(x) = tanxThus, we have:(x+h)=tanx+hddx(f(x))=lim h0 f(x+h)-f(x) h=lim h0 tanx+h-tanx h=lim h0 sin x+h-xh cosx+h cos x tan A-tan B= sin(A-B)cos A cos B =lim h0 sin x+h-xx+h-x cosx+h cos x =lim h0 sin x+h-xx+h-xx+h-xcosx+h cos x =lim h0sin x+h-xx+h-x.lim h0 1x+h+xcosx+hcosx lim h0sinx+h-xx+h-x=1=1×12xcosxcosx=12xsec2x


(iv) Let f(x)= tan x2 Thus, we have:f(x+h) = tan (x+h)2ddxf(x)=limh0f(x+h)-f(x)h=limh0 tan (x+h)2-tanx2h=limh0sinx+h2-x2h cos x+h2cosx2 tan A-tan B=sin (A-B)cos A cos B=limh0 sin(x2+h2+2hx-x2)hcosx+h2cosx2=limh0sin(hh+2x)hh+2x cosx+h2cosx2×h+2x=limh0 sin(hh+2x)(hh+2x)limh0 h+2xcos(x+h)2cos x2 As limh0 sin(hh+2x)(hh+2x)=1=1×2xcos2 x2=2x sec2x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon