(i) sin6θ+cos6θ=1−3sin2θcos2θ
(ii) sin4θ−cos4θ=sin2θ−cos2θ
(iii) cosec4θ−cosec2θ=cot4θ+cot2θ
(ii) sin4θ−cos4θ=sin2θ−cos2θLHS=sin4θ−cos4θ=(sin2θ)2−(cos2θ)2=(sin2θ+cos2θ)(sin2θ−cos2θ)=sin2θ−cos2θ=RHS
(iii)cosec4θ−cot4θ=cosec2θ+cot2θLHS=cosec4θ−cot4θ=(cosec2θ)2−(cot2θ)2=(cosec2θ+cot2θ)(cosec2θ−cot2θ)=cosec2θ+cot2θ=RHS