Prove that following identities:
(i) sinθ−cosθsinθ+cosθ+sinθ+cosθsinθ−cosθ=22sin2θ−1
(ii)sinθ+cosθsinθ−cosθ+sinθ−cosθsinθ+cosθ=21−2cos2θ
(i) Consider LHS=sinθ−cosθsinθ+cosθ+sinθ+cosθsinθ−cosθ
=(sinθ−cosθ)2+(sinθ+cosθ)2(sinθ+cosθ)(sinθ−cosθ)
=sin2θ+cos2θ−2sinθcosθ+sin2θ+cos2θ+2sinθ cosθsin2θ−cos2θ
=1+1sin2θ−(1−sin2θ)[Since, sin2θ+cos2θ=1]
=2sin2θ−1+sin2θ
=22sin2θ−1
=RHS
Hence,sinθ−cosθsinθ+cosθ+sinθ+cosθsinθ−cosθ=22sin2θ−1
(ii) LHS=sinθ+cosθsinθ−cosθ+sinθ−cosθsinθ+cosθ
=(sinθ+cosθ)2+(sinθ−cosθ)2(sinθ−cosθ)(sinθ+cosθ)
=sin2θ+cos2θ+2sinθ cosθ+sin2θ+cos2θ−2sinθcosθ(sin2θ−cos2θ)
=1+1(1−cos2θ)−cos2θ
(since, sin2θ+cos2θ=1)
=21−2cos2θ
=RHS
Hence, sinθ+cosθsinθ−cosθ+sinθ−cosθsinθ+cosθ=21−2cos2θ