wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that following identities:
(i) sinθcosθsinθ+cosθ+sinθ+cosθsinθcosθ=22sin2θ1
(ii)sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ=212cos2θ

Open in App
Solution

(i) Consider LHS=sinθcosθsinθ+cosθ+sinθ+cosθsinθcosθ
=(sinθcosθ)2+(sinθ+cosθ)2(sinθ+cosθ)(sinθcosθ)
=sin2θ+cos2θ2sinθcosθ+sin2θ+cos2θ+2sinθ cosθsin2θcos2θ
=1+1sin2θ(1sin2θ)[Since, sin2θ+cos2θ=1]
=2sin2θ1+sin2θ
=22sin2θ1
=RHS
Hence,sinθcosθsinθ+cosθ+sinθ+cosθsinθcosθ=22sin2θ1
(ii) LHS=sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ
=(sinθ+cosθ)2+(sinθcosθ)2(sinθcosθ)(sinθ+cosθ)
=sin2θ+cos2θ+2sinθ cosθ+sin2θ+cos2θ2sinθcosθ(sin2θcos2θ)
=1+1(1cos2θ)cos2θ
(since, sin2θ+cos2θ=1)
=212cos2θ
=RHS
Hence, sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ=212cos2θ


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon