Prove:
(i)sin2θ+11+tan2θ=1
(ii)11+tan2θ+11+cot2θ=1
(i)sin2θ+11+tan2θ=1
LHS =sin2θ+11+tan2θ
=sin2θ+1sec2θ ∵sec2θ−tan2θ=1
=sin2θ+cos2θ
=1 (∵sin2θ+cos2θ=1)
=RHS
(ii) 11+tan2θ+11+cot2θ=1
LHS =11+tan2θ+11+cot2θ
=1sec2θ+1cosec2θ (∵sec2θ−tan2θ=1 and cosec2θ−cot2θ=1
=cos2θ+sin2θ
=1
= RHS