wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) sin6θ+cos6θ=1-3sin2θcos2θ
(ii) sin2θ+cos4θ=cos2θ+sin4θ
(iii) cosec4θ-cosec2θ=cot4θ+cot2θ

Open in App
Solution

(i) LHS=sin6θ+cos6θ =(sin2θ)3+(cos2θ)3 =(sin2θ+cos2θ)(sin4θsin2θcos2θ+cos4θ) =1×{(sin2θ)2+2sin2θcos2θ+(cos2θ)23sin2θcos2θ} =(sin2θ+cos2θ)23sin2θcos2θ =(1)23sin2θcos2θ =13sin2θcos2θ =RHSHence, LHS = RHS(ii) LHS=sin2θ+cos4θ =sin2θ+(cos2θ)2 =sin2θ+(1sin2θ)2 =sin2θ+12sin2θ+sin4θ =1sin2θ+sin4θ =cos2θ+sin4θ =RHSHence, LHS = RHS(iii) LHS=cosec4θcosec2θ =cosec2θ(cosec2θ1) =cosec2θ×cot2θ (cosec2θcot2θ=1) =(1+cot2θ)×cot2θ =cot2θ+cot4θ =RHSHence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon