(i) tan−1(x−1)+tan−1x+tan−1(x+1)=tan−13x
⇒tan−1(x−1)+tan−1(x+1)=tan−13x−tan−1x
⇒tan−1(x−1+x+11−(x−1)(x+1))=tan−1(3x−x1+3x2)
⇒2x1−(x2−1)=2x1+3x2
⇒x(1+3x2)=x(2−x2)
⇒x(1+3x2−2+x2)=0
⇒x(4x2−1)=0
⇒x=0;4x2−1=0
⇒x2=14
⇒x=±12
⇒x=0,±12
(ii) Take LHS,
tan−1(6x−8x31−12x2)−tan−1(4x1−4x2)
⇒tan−1⎛⎜ ⎜ ⎜ ⎜⎝6x−8x31−12x2−4x1−4x21+6x−8x31−12x2×4x1−4x2⎞⎟ ⎟ ⎟ ⎟⎠
⇒tan−1((6x−8x3)(1−4x2)−4x(1−12x2)(1−12x2)(1−4x2)+(6x−8x3)4x)
⇒tan−1(6x−24x3−8x3+32x5−4x+48x31−4x2−12x2+48x4+24x2−32x4)
⇒tan−1(32x5+16x3+2x16x4+8x2+1)
⇒tan−1(2x(16x4+8x+1)16x4+8x+1)
⇒tan−12x= RHS
Hence proved.