Given 1 root is double of another
24x2−14x2−63x+λ=0...(1)
Let α,β,γ be the roots of eq (1) then using property
α+β+γ=1424⇒3α+γ=1424...(1) [β=2α]
αβ+βγ+γα=−6324.⇒2α2+3αγ=−6324...(2)
αβγ=λ24⇒α2γ=−λ24...(3)
form eq (1) & (2) we get 2α2+3α(1424−3α)=−6324
168α2−42α−63=0
8α2−2α−3=0⇒(α=34,−12)
For α=34γ=−53 [ from eq (1)]
For α=−12γ=−34
Hence, λ=−48α2γ [from eq 3]
Then [λ=45λ=18]
(α=34,γ=−53)
(α=−12γ=−34)
(ii) Given 18x3+81x2+λx+60=0,...(1) 1 root is half the sum of other two
Let α,β,γ be root of eq (1)
then α+β+γ=−8118⇒3α=−8118⇒[α=−32][∵α=β+γ2]
αβγ=−6018
βγ=−6618,−23=209
then αβ+βγ+γα=λ18.⇒α(β+γ)+βγ=λ18
λ=18[α(β+γ)+βγ]=18[−32×−3+209]
λ=18[81+4018]=121.
[λ=121]
Hence, value of λ is 121.