Solve the following pairs of equations by reducing them to a pair of linear equations:
12x+13y=2
13x+12y=136
Given:
The pair of linear equations are,
12x+13y=2
13x+12y=136
Let 1x=p and 1y=q, then the equations changes as below:
p2+q3=2
⇒3p+2q6=2
⇒3p+2q−12=0 ... (i)
p3+q2=136
⇒2p+3q6=136
⇒2p+3q−13=0 ... (ii)
Multiply eq (i) by 2
⇒6p+4q−24=0 ----(iii)
Multiply eq (ii) by 3
⇒6p+9q−39=0 ---(iv)
Lets do (iii)-(iv)
⇒6p+4q−24−(6p+9q−39)=0
⇒6p+4q−24−6p−9q+39=0
⇒−5q+15=0
⇒−5q=−15
⇒5q=15
⇒q=155
⇒q=3
Now, 1y=q
⇒y=1q=13---(v)
Lets substitute q=3 in 6p+9q−39=0
⇒6p+9(3)−39=0
⇒6p+27−39=0
⇒6p−12=0
⇒6p=12
⇒p=126
⇒p=2
Now, 1x=p
⇒x=1p=12 ---(vi)
From (v) and (vi), x=12 and y=13