The correct option is
B only II, III
(1) tan3x−tan2x1+tan3xtan2x=1
or, tan(3x−2x)=tanπ4
or, tanx=tanπ4
or, x=nπ+π4
where n=0,1,2.... i.e. positive integers.
But here given n∈I, but it is not true for negative values of n.
So, (1) is wrong.
(2)(1+tanx+tan2x)(1−cotx+cot2x)
=(sinxcosx+1cos2x)(1sin2x−cosxsinx)
=(1+sinxcosxcos2x)(1−sinxcosxsin2x)
=1−sin2xcos2xsin2xcos2x
=sin4x+cos4x+2sin2xcos2x−sin2xcos2xsin2xcos2x
This value is always positive.
So, option (2) is correct.
(3)Let's assume
esinx−e−sinx=4
e2sinx−4esinx−1=0
or, esinx=4±√16+42=2±√5
or, sinx=ln(2+√5)
and sinx=ln(2−√5)
But 2−√5 is −ve. So, it is not possible.
∴sinx=ln(2+√5)
⇒2+√5>e
∴ln(2+√5)>1
∴sinx>1 which is not possible.
∴esinx−e−sinx≠4
∴ Option (3) is correct.