The correct option is A only I is true
ii=(eiπ2)i
=e−π2
z=ilog(2+√3)
sin(z)=eiz−eiz2
And
ilog(2+√3)
=ilog(12−√3)
iz=−log(12−√3)
=log(2−√3)
Hence
sin(z)=eiz−e−iz2
=e2iz−12eiz
=(2−√3)2−12(2−√3)
=4+3−2√3−12(2−√3)
=6−2√32(2−√3)
=(3−√3)(2+√3)
=6+3√3−2√3−3
=3+√3
Hence, option 'A' is correct.