Identify the correct formula for calculating r.
r=N∑(XiYi)–(∑Xi)(∑Yi)√N∑X2i–(∑Xi)2√N∑Y2i–(∑Yi)2
r=N∑(XiYi)–N(∑Xi)(∑Yi)√N∑X2i–(∑Xi)2√N∑Y2i–(∑Yi)2
r=N∑(XiYi)–(∑Xi)(∑Yi)(N∑X2i–(∑Xi)2)(N∑Y2i–(∑Yi)2)
r=N∑(XiYi)–N(∑Xi)(∑Yi)(N∑X2i–(∑Xi)2)(N∑Y2i–(∑Yi)2)
r=N∑(XiYi)–(∑Xi)(∑Yi)√N∑X2i–(∑Xi)2√N∑Y2i–(∑Yi)2 This is the Karl Pearson's formula for calculating r.
Show that the two formulae for the standard deviation of ungrouped data .
σ=√1n∑(xi−¯¯¯¯¯X)2 and σ′=√1n∑x2i−¯¯¯¯¯X2 are equivalent , where ¯¯¯¯¯X=1n∑xi