Identify the value of x in the equation xx−a+xx−b=2.
2aba+b
xx−a+xx−b=2
x(x−b)+x(x−a)(x−a)(x−b)=2
x2−xb+x2−xa=2[(x−b)(x−a)]
2x2−xb−xa=2[x2−xb−ax+ab]
2x2−xb−xa=2x2−2xb−2ax+2ab
Cancelling similar terms on both sides,
−xb−xa=−2xb−2ax+2ab
Shifting all x terms to LHS.
xb+ax=2ab
x(a+b)=2ab
x=2aba+b.