The correct option is C The sum of all the solutions of the equation is 6
log(x2+2x−3)(4−log2(|x−1|+|x−3|))=0
log function is defined when
(1) x2+2x−3>0⇒x∈(−∞,−3)∪(1,∞)
(2) x2+2x−3≠1
⇒x≠−1±√5
(3) log2(|x−1|+|x−3|)=3
⇒|x−1|+|x−3|=8
⇒x=−2,6
But x=−2 is not possible.
∴x=6