1−cos(2x−π)−cos(4x+π)+cos(6x−2π)=4cosxcos2x.cosx
=cos(2x−π)=cos(π−2x)=−cos2x (II2d quadrant cosine -v)
cos(6x−2π)=cos(2π−6x)=cos6x (IVth quadrant cosine +ve)
cos(x+4x)=−cos4x (IIIrd quadrant cosine -ve)
So finally
1+cos2x+cos4x+cos6x=4cosxcos2xcos3x
take RHS
RHS =4cosxcos2xcos3x
Using 2cosAcosB=cos(A+B)+cos(A−B)
RHS =2(2cosxcos2x)cos3x
RHS =2(cos(3x)+cosx)−cos3x
RHS =2cos3xcos3x+2cosxcos3x
RHS =2cos23x+2cosxcos3x
again
RHS =2cos23x+cos4x+cos2x
RHS =2(1+cos2.(3x)2)+cos4x+cos2x {cos2A=2cos2A−1,cos2A=1+cos2A2
RHS =1+cos2x+cos4x+cos6x= LHS
Hence proved