wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Identity transformations of Trigonometric Expressions.
Prove the following identities.
1cos(2xπ)cos(4x+π)+cos(6x2π)=4cosx×cos2xcos3x.

Open in App
Solution

1cos(2xπ)cos(4x+π)+cos(6x2π)=4cosxcos2x.cosx
=cos(2xπ)=cos(π2x)=cos2x (II2d quadrant cosine -v)
cos(6x2π)=cos(2π6x)=cos6x (IVth quadrant cosine +ve)
cos(x+4x)=cos4x (IIIrd quadrant cosine -ve)
So finally
1+cos2x+cos4x+cos6x=4cosxcos2xcos3x
take RHS
RHS =4cosxcos2xcos3x
Using 2cosAcosB=cos(A+B)+cos(AB)
RHS =2(2cosxcos2x)cos3x
RHS =2(cos(3x)+cosx)cos3x
RHS =2cos3xcos3x+2cosxcos3x
RHS =2cos23x+2cosxcos3x
again
RHS =2cos23x+cos4x+cos2x
RHS =2(1+cos2.(3x)2)+cos4x+cos2x {cos2A=2cos2A1,cos2A=1+cos2A2
RHS =1+cos2x+cos4x+cos6x= LHS
Hence proved

1125561_886871_ans_26a146d1a46b4f39b2eb45a469110106.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon