wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Identity transformations of Trigonometric Expressions.
prove the following identities.
cos4αsin4αcot2α=cos2α2cos2α.

Open in App
Solution

For proving the identity,
cos4αsin4αcos2α=cos2α2cos2α
First evaluate the L.H.S,
cos4αsin4αcot2α
=cos4α2(sin2αcos2α)cot2α [Using the fact, sin4α=2sin2αcos2α]
=cos4α2(sin2αcos2α)cos2αsin2α [Using the fact, cot2α=cos2αsin2α]
=cos4α2cos22α
=2cos22α12cos22α [using the fact, cos4α=2cos22α1]
=1
Now, let's evaluate the R.H.S,
=cos2α2cos2α
=2cos2α12cos2α [using the fact, cos2α=2cos2α1]
=1
Since, L.H.S=R.H.S, we can say
cos4αsin4αcot2α=cos2α2cos2α
[proved].

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon