For proving the identity,
cos4α−sin4αcos2α=cos2α−2cos2α
First evaluate the L.H.S,
cos4α−sin4αcot2α
=cos4α−2(sin2αcos2α)cot2α [Using the fact, sin4α=2sin2αcos2α]
=cos4α−2(sin2αcos2α)cos2αsin2α [Using the fact, cot2α=cos2αsin2α]
=cos4α−2cos22α
=2cos22α−1−2cos22α [using the fact, cos4α=2cos22α−1]
=−1
Now, let's evaluate the R.H.S,
=cos2α−2cos2α
=2cos2α−1−2cos2α [using the fact, cos2α=2cos2α−1]
=−1
Since, L.H.S=R.H.S, we can say
cos4α−sin4αcot2α=cos2α−2cos2α
[proved].