wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Identity transformations of Trigonometric Expressions.
prove the following identities.
sin2xsin3xsin4xcos2xcos3x+cos4x=tan3x.

Open in App
Solution

sin2xsin3xsin4xcos2xcos3x+cos4x=tan3x
Let's take
LHS =sin2xsin3xsin4xcos2xcos3x+cos4x
from identify
sinAsinB=2sin(A+B2)cos(AB2)
and cosA+cosB=2cos(A+B2)cos(AB2)
So, LHS =(sin2xsin4x)sin3x(cos2x+cos4x)cos3x
using above properties
LHS =2sin(6x2)cos(2x4x2)sin3x2cos(2x+4x2)cos(2x4x2)cos3x
LHS =2sin3xcosxsin3x2cos3xcosxcos3x } cos(x)=cosx
Lets take sin3x and cos3x conman
LHS =sin3xcos3x(2cosx12cosx1)
LHS=tan3x=RHS
Hence proved.

1125501_886865_ans_13ffc8ea31874cea93f7a7f0c3609ecd.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon