wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Identity transformations of Trigonometric Expressions.
prove the following identities.
sin(πα)sinαcosαtanα2+cos(πα)=1.

Open in App
Solution

sin(πα)sinαcosαtanα/2+cos(πα)=1
LHS=sin(πα)sin2cos2tanα/2+cos(πα)
cos(πα)=cosα (in IInd quadrant cos is -ve)
sin(πα)=sinα in IInd quadrant sin is +ve
and tanα2=sinα1+cosα {By properties of trigonometric fraction}.
So
LHS=sinαsinαcosα.sinα1+cosαcosα
LHS=sinαsinα(1cosα1+cosα)cosα
LHS=1+cosα1+cosαcosαcosα=1+cosαcoaα
=1=RHS Proved.

1125605_886880_ans_0cde0d12fe1046bd865b66cd92fd1cde.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon