Differentiation of Inverse Trigonometric Functions
If 0< a1< a...
Question
If 0<a1<a2<....<an,then prove that tan−1(a1x−yx+a1y)+tan−1(a2−a11+a2a1)+tan−1(a3−a21+a3a2)+...+tan−1(an−an−11+anan−1)+tan−1(1an) is of the form k1π+tan−1k2xy, then 8k1k2 is equal to
Open in App
Solution
Consider tan−1(an−an−11+an.an−1) =tan−1(1an−1−1an1+1an.1an−1) =tan−1(1an−1)−tan−1(1an) Hence tan−1(a2−a11+a1.a2)+tan−1(a3−a21+a2.a3)+....+tan−1(1an) =tan−1(1a1)−tan−1(1a2)+tan−1(1a2)−tan−1(1a3)....+tan−1(1an−1)−tan−1(1an)+tan−1(1an) =tan−1(1a1) ...(i) Now tan−1a1x−ya1y+x+tan−1(1a1) =tan−1(a1x−ya1y+x+1a11−1a1.a1x−ya1y+x) =tan−1(a21x−a1y+a1y+xa21y+a1x−a1x+y) =tan−1(a21x+xa21y+y) =tan−1(xy). Hence k1=0 and k2=1.