wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 0<a1<a2<....<an,then prove that tan1(a1xyx+a1y)+tan1(a2a11+a2a1)+tan1(a3a21+a3a2)+...+tan1(anan11+anan1)+tan1(1an) is of the form k1π+tan1k2xy, then 8k1k2 is equal to

Open in App
Solution

Consider
tan1(anan11+an.an1)
=tan1(1an11an1+1an.1an1)
=tan1(1an1)tan1(1an)
Hence
tan1(a2a11+a1.a2)+tan1(a3a21+a2.a3)+....+tan1(1an)
=tan1(1a1)tan1(1a2)+tan1(1a2)tan1(1a3)....+tan1(1an1)tan1(1an)+tan1(1an)
=tan1(1a1) ...(i)
Now
tan1a1xya1y+x+tan1(1a1)
=tan1(a1xya1y+x+1a111a1.a1xya1y+x)
=tan1(a21xa1y+a1y+xa21y+a1xa1x+y)
=tan1(a21x+xa21y+y)
=tan1(xy).
Hence k1=0 and k2=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon