The correct option is C (b−a)b<lnba<(b−a)a
Let f(x)=lnx
Applying lagrange formula to it on the interval [a,b]
⇒f(b)−f(a)b−a=f′(c),c∈(a,b)
Hence, lnb−lnab−a=1c
⇒lnba=(b−a)1c
The right hand side of this equation is minimum when c=b and takes a maximum at c=a
∴b−ab<lnba<b−aa